Stromal PD-1/PD-L1 Expression Predicts Outcome in Colon Cancer Patients

Published:September 20, 2018DOI:



      The programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) axis plays an important role in controlling immune suppression by down-regulating T effector cell activities, enabling tumor cells to escape from the host’s antitumor immunsurveillance. While only a small part of colon cancer cells express PD-L1, we sought to evaluate the differential impact of stromal and epithelial PD-L1 expression of primary tumors and liver metastasis on overall survival (OS) in colon cancer patients.

      Patients and Methods

      Using a next-generation tissue microarray approach, we assessed both epithelial and stromal PD-L1 expression levels in primary tumors (n = 279) and corresponding liver metastases (n = 14) of colon cancer patients. PD-L1 positivity was graded according to the percentage (0.1%-1%, > 1%, > 5%, > 50%) of tumor cells with membranous PD-L1 expression or as the percentage of positive stroma cells and associated inflammatory infiltrates. We also assessed the interplay between stromal PD-1/PD-L1 and both intratumoral and stromal CD8 count and their impact on outcome. The primary end point was OS.


      Stromal PD-L1 and PD-1 expression were both associated with less aggressive tumor behavior in colon cancer patients, which translated into better OS and disease-free survival, respectively. Conversely, PD-L1 staining in the tumor cells was less frequent than stromal staining and was associated with features of aggressive tumor biology, although without impact on outcome. Interestingly, the PD-L1 staining pattern remained similar between primary tumors and corresponding liver metastases. Stromal PD-1 expression correlated significantly with stromal PD-L1 staining and both intratumoral and stromal CD8 expression.


      Stromal PD-1/PD-L1 expression might serve as a prognostic marker in colon cancer patients.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Clinical Colorectal Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Arnold M.
        • Sierra M.S.
        • Laversanne M.
        • et al.
        Global patterns and trends in colorectal cancer incidence and mortality.
        Gut. 2017; 66: 683-691
        • Berger M.D.
        • Lenz H.J.
        The safety of monoclonal antibodies for treatment of colorectal cancer.
        Expert Opin Drug Saf. 2016; 15: 799-808
        • Allegra C.J.
        • Yothers G.
        • O’Connell M.J.
        • et al.
        Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08.
        J Clin Oncol. 2011; 29: 11-16
        • De Gramont A.
        • Van Cutsem E.
        • Schmoll H.J.
        • et al.
        Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial.
        Lancet Oncol. 2012; 13: 1225-1233
        • Borghaei H.
        • Paz-Ares L.
        • Horn L.
        • et al.
        Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer.
        N Engl J Med. 2015; 373: 1627-1639
        • Bellmunt J.
        • de Wit R.
        • Vaughn D.J.
        • et al.
        Pembrolizumab as second-line therapy for advanced urothelial carcinoma.
        N Engl J Med. 2017; 376: 1015-1026
        • Motzer R.J.
        • Escudier B.
        • McDermott D.F.
        • et al.
        Nivolumab versus everolimus in advanced renal-cell carcinoma.
        N Engl J Med. 2015; 373: 1803-1813
        • Ferris R.L.
        • Blumenschein Jr., G.
        • Fayette J.
        • et al.
        Nivolumab for recurrent squamous-cell carcinoma of the head and neck.
        N Engl J Med. 2016; 375: 1856-1867
        • Larkin J.
        • Chiarion-Sileni V.
        • Gonzalez R.
        • et al.
        Combined nivolumab and ipilimumab or monotherapy in untreated melanoma.
        N Engl J Med. 2015; 373: 23-34
        • Le D.T.
        • Uram J.N.
        • Wang H.
        • et al.
        PD-1 Blockade in tumors with mismatch-repair deficiency.
        N Engl J Med. 2015; 372: 2509-2520
        • Overman M.J.
        • McDermott R.
        • Leach J.L.
        • et al.
        Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study.
        Lancet Oncol. 2017; 18: 1182-1191
        • Ni L.
        • Dong C.
        New B7 family checkpoints in human cancers.
        Mol Cancer Ther. 2017; 16: 1203-1211
        • Chen L.
        • Han X.
        Anti–PD-1/PD-L1 therapy of human cancer: past, present, and future.
        J Clin Invest. 2015; 125: 3384-3391
        • Shi L.
        • Chen S.
        • Yang L.
        • et al.
        The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies.
        J Hematol Oncol. 2013; 6: 74
        • Rosenbaum M.W.
        • Bledsoe J.R.
        • Morales-Oyarvide V.
        • et al.
        PD-L1 expression in colorectal cancer is associated with microsatellite instability, BRAF mutation, medullary morphology and cytotoxic tumor-infiltrating lymphocytes.
        Mod Pathol. 2016; 29: 1104-1112
        • Black M.
        • Barsoum I.B.
        • Truesdell P.
        • et al.
        Activation of the PD-1/PD-L1 immune checkpoint confers tumor cell chemoresistance associated with increased metastasis.
        Oncotarget. 2016; 7: 10557-10567
        • Llosa N.J.
        • Cruise M.
        • Tam A.
        • et al.
        The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints.
        Cancer Discov. 2015; 5: 43-51
        • Lugli A.
        • Kirsch R.
        • Ajioka Y.
        • et al.
        Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016.
        Mod Pathol. 2017; 30: 1299-1311
        • Zlobec I.
        • Suter G.
        • Perren A.
        • et al.
        A next-generation tissue microarray (ngTMA) protocol for biomarker studies.
        J Vis Exp. 2014; 91: 51893
        • Berger M.D.
        • Yang D.
        • Sunakawa Y.
        • et al.
        Impact of sex, age, and ethnicity/race on the survival of patients with rectal cancer in the United States from 1988 to 2012.
        Oncotarget. 2016; 7: 53668-53678
        • Lee K.S.
        • Kwak Y.
        • Ahn S.
        • et al.
        Prognostic implication of CD274 (PD-L1) protein expression in tumor-infiltrating immune cells for microsatellite unstable and stable colorectal cancer.
        Cancer Immunol Immunother. 2017; 66: 927-939
        • Thompson E.D.
        • Zahurak M.
        • Murphy A.
        • et al.
        Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma.
        Gut. 2017; 66: 794-801
        • Droeser R.A.
        • Hirt C.
        • Viehl C.T.
        • et al.
        Clinical impact of programmed cell death ligand 1 expression in colorectal cancer.
        Eur J Cancer. 2013; 49: 2233-2242
        • Shi S.J.
        • Wang L.J.
        • Wang G.D.
        • et al.
        B7-H1 expression is associated with poor prognosis in colorectal carcinoma and regulates the proliferation and invasion of HCT116 colorectal cancer cells.
        PLoS One. 2013; 8: e76012
        • Zhu J.
        • Chen L.
        • Zou L.
        • et al.
        MiR-20b, -21, and -130b inhibit PTEN expression resulting in B7-H1 over-expression in advanced colorectal cancer.
        Hum Immunol. 2014; 75: 348-353
        • Masugi Y.
        • Nishihara R.
        • Yang J.
        • et al.
        Tumour CD274 (PD-L1) expression and T cells in colorectal cancer.
        Gut. 2017; 66: 1463-1473
        • Koganemaru S.
        • Inoshita N.
        • Miura Y.
        • et al.
        Prognostic value of programmed death-ligand 1 expression in patients with stage III colorectal cancer.
        Cancer Sci. 2017; 108: 853-858
        • Gaule P.
        • Smithy J.W.
        • Toki M.
        • et al.
        A quantitative comparison of antibodies to programmed cell death 1 ligand 1 [Epub ahead of print].
        JAMA Oncol. 2016;
        • Taube J.M.
        • Klein A.
        • Brahmer J.R.
        • et al.
        Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy.
        Clin Cancer Res. 2014; 20: 5064-5074
        • Berger M.D.
        • Stintzing S.
        • Heinemann V.
        • et al.
        Impact of genetic variations in the MAPK signaling pathway on outcome in metastatic colorectal cancer patients treated with first-line FOLFIRI and bevacizumab: data from FIRE-3 and TRIBE trials.
        Ann Oncol. 2017; 28: 2780-2785
        • Lyford-Pike S.
        • Peng S.
        • Young G.D.
        • et al.
        Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma.
        Cancer Res. 2013; 73: 1733-1741
        • Schmidt L.H.
        • Kümmel A.
        • Görlich D.
        • et al.
        PD-1 and PD-L1 expression in NSCLC indicate a favorable prognosis in defined subgroups.
        PLoS One. 2015; 10: e0136023
        • Callea M.
        • Albiges L.
        • Gupta M.
        • et al.
        Differential expression of PD-L1 between primary and metastatic sites in clear-cell renal cell carcinoma.
        Cancer Immunol Res. 2015; 3: 1158-1164
        • Boorjian S.A.
        • Sheinin Y.
        • Crispen P.L.
        • et al.
        T-cell coregulatory molecule expression in urothelial cell carcinoma: clinicopathologic correlations and association with survival.
        Clin Cancer Res. 2008; 14: 4800-4808
        • Miyoshi H.
        • Kiyasu J.
        • Kato T.
        • et al.
        PD-L1 expression on neoplastic or stromal cells is respectively a poor or good prognostic factor for adult T-cell leukemia/lymphoma.
        Blood. 2016; 128: 1374-1381
        • Yamazaki T.
        • Akiba H.
        • Koyanagi A.
        • et al.
        Blockade of B7-H1 on macrophages suppresses CD4+ T cell proliferation by augmenting IFN-gamma–induced nitric oxide production.
        J Immunol. 2005; 175: 1586-1592
        • Dong H.
        • Zhu G.
        • Tamada K.
        • et al.
        B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion.
        Nat Med. 1999; 5: 1365-1369
        • Tseng S.Y.
        • Otsuji M.
        • Gorski K.
        • et al.
        B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells.
        J Exp Med. 2001; 193: 839-846
        • Tamura H.
        • Dong H.
        • Zhu G.
        • et al.
        B7-H1 costimulation preferentially enhances CD28-independent T-helper cell function.
        Blood. 2001; 97: 1809-1816
        • Ni X.
        • Song Q.
        • Cassady K.
        • et al.
        PD-L1 interacts with CD80 to regulate graft-versus-leukemia activity of donor CD8+ T cells.
        J Clin Invest. 2017; 127: 1960-1977
        • Pulko V.
        • Harris K.J.
        • Liu X.
        • et al.
        B7-h1 expressed by activated CD8 T cells is essential for their survival.
        J Immunol. 2011; 187: 5606-5614
        • Lee S.J.
        • O’Donnell H.
        • McSorley S.J.
        B7-H1 (programmed cell death ligand 1) is required for the development of multifunctional Th1 cells and immunity to primary, but not secondary, Salmonella infection.
        J Immunol. 2010; 185: 2442-2449
        • Mlecnik B.
        • Bindea G.
        • Angell H.K.
        • et al.
        Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability.
        Immunity. 2016; 44: 698-711
        • Pagès F.
        • Mlecnik B.
        • Marliot F.
        • et al.
        International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study.
        Lancet. 2018; 391: 2128-2139
        • Koelzer V.H.
        • Lugli A.
        • Dawson H.
        • et al.
        CD8/CD45RO T-cell infiltration in endoscopic biopsies of colorectal cancer predicts nodal metastasis and survival.
        J Transl Med. 2014; 12: 81
        • Zou W.
        • Chen L.
        Inhibitory B7-family molecules in the tumour microenvironment.
        Nat Rev Immunol. 2008; 8: 467-477
        • Zitvogel L.
        • Kroemer G.
        Targeting PD-1/PD-L1 interactions for cancer immunotherapy.
        Oncoimmunology. 2012; 1: 1223-1225
        • Gao Q.
        • Wang X.Y.
        • Qiu S.J.
        • et al.
        Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma.
        Clin Cancer Res. 2009; 15: 971-979
        • Wu P.
        • Wu D.
        • Li L.
        • et al.
        PD-L1 and survival in solid tumors: a meta-analysis.
        PLoS One. 2015; 10: e0131403
        • Madore J.
        • Vilain R.E.
        • Menzies A.M.
        • et al.
        PD-L1 expression in melanoma shows marked heterogeneity within and between patients: implications for anti-PD-1/PD-L1 clinical trials.
        Pigment Cell Melanoma Res. 2015; 28: 245-253