Current Microsatellite Instability Testing in Management of Colorectal Cancer

  • Belinda L. Sun
    Address for correspondence: Belinda L. Sun, MD, PhD, Department of Pathology, Banner-University Medical Center, University of Arizona, 1625 N Campbell Ave, Tucson, AZ 85721
    Department of Pathology, Banner-University Medical Center, University of Arizona, Tucson, AZ
    Search for articles by this author
Published:August 10, 2020DOI:


      Colorectal cancer (CRC) is the third most common cancer worldwide. In the past decade, mismatch repair deficiency (dMMR), manifested as microsatellite instability-high (MSI-H), has been recognized as a distinct mechanism promoting tumorigenesis in 15% of CRCs including 3% Lynch syndrome and 12% sporadic CRCs. As the molecular classifications of CRCs are continuously evolving, MSI-H CRCs appear to be the most homogeneous CRCs with distinct molecular, morphologic, and clinical features. MSI-H CRCs have dMMR causing MSI-H and genetic hypermutation but with diploid chromosomes. Morphologically, MSI-H CRCs appear as poorly differentiated or mucinous adenocarcinoma with characteristic lymphocytic infiltration. Most importantly, MSI-H CRCs have better stage-adjusted survival, do not respond well to standard 5-fluorouracil–based adjuvant chemotherapy, but do respond to immunotherapy. The United States Food and Drug Administration granted accelerated approval to immune checkpoint inhibitors, anti-programmed cell death protein-1 antibodies pembrolizumab and nivolumab, and the combination of nivolumab with anti-CTLA4 antibody ipilimumab for the second-line treatment of patients with stage IV MSI-H CRCs in 2017. There are still ongoing phase III clinical trials evaluating pembrolizumab and anti-programmed death-ligand 1 antibody atezolizumab as the first-line treatment in stage IV MSI-H CRCs and a phase I study on the combination of nivolumab and ipilimumab in patients with early stage CRC. These ongoing clinical studies on immunotherapy may lead to practice-changing results in the management of MSI-H CRCs. The National Comprehensive Cancer Network 2018 guidelines recommended MSI to be tested in all newly diagnosed CRCs. The MSI test will become increasingly vital in guiding adjuvant chemotherapy and immunotherapy in the management of CRCs.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Clinical Colorectal Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Rawla P.
        • Sunkara T.
        • Barsouk A.
        Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors.
        Prz Gastroenterol. 2019; 14: 89-103
      1. National Comprehensive Cancer Network Genetic/Familial High-Risk Assessment: Colorectal (Version 1 2018).
        (Available at:)
        • Jansen A.
        • Gemayel R.
        • Verstrepen K.J.
        Unstable microsatellite repeats facilitate rapid evolution of coding and regulatory sequences.
        Genome Dyn. 2012; 7: 108-125
        • Dakin E.E.
        • Avise J.C.
        Microsatellite null alleles in parentage analysis.
        Heredity. 2004; 93: 504-509
        • Li G.M.
        Mechanisms and functions of DNA mismatch repair.
        Cell Res. 2008; 18: 85-98
        • Hsieh P.
        • Yamane K.
        DNA mismatch repair: molecular mechanism, cancer, and ageing.
        Mech Ageing Dev. 2008; 129: 391-407
        • Koessler T.
        • Oestergaard M.Z.
        • Song H.
        • et al.
        Common variants in mismatch repair genes and risk of colorectal cancer.
        Gut. 2008; 57: 1097-1101
        • Fearon E.R.
        • Vogelstein B.
        A genetic model for colorectal tumorigenesis.
        Cell. 1990; 61: 759-767
        • Vogelstein B.
        • Fearon E.R.
        • Hamilton S.R.
        • et al.
        Genetic alterations during colorectal-tumor development.
        N Engl J Med. 1988; 319: 525-532
        • Powell S.M.
        • Petersen G.M.
        • Krush A.J.
        • et al.
        Molecular diagnosis of familial adenomatous polyposis.
        N Engl J Med. 1993; 329: 1982-1987
        • Moisio A.L.
        • Järvinen H.
        • Peltomäki P.
        Genetic and clinical characterisation of familial adenomatous polyposis: a population based study.
        Gut. 2002; 50: 845-850
        • Lync H.T.
        • Shaw M.W.
        • Magnuson C.W.
        • Larsen A.L.
        • Krush A.J.
        Hereditary factors in cancer: study of two large Midwestern kindreds.
        Arch Intern Med. 1966; 117: 206-212
        • Peltomäki P.
        • Aaltonen L.A.
        • Sistonen P.
        • et al.
        Genetic mapping of a locus predisposing to human colorectal cancer.
        Science. 1993; 260: 810-812
        • Huang J.
        • Papadopoulos N.
        • McKinley A.J.
        • et al.
        APC mutations in colorectal tumors with mismatch repair deficiency.
        Proc Natl Acad Sci U S A. 1996; 93: 9049-9054
        • Konishi M.
        • Kikuchi-Yanoshita R.
        • Tanaka K.
        • et al.
        Molecular nature of colon tumors in hereditary nonpolyposis colon cancer, familial polyposis, and sporadic colon cancer.
        Gastroenterology. 1996; 111: 307-317
        • Losi L.
        • Ponz de Leon M.
        • Jiricny J.
        • et al.
        K-ras and p53 mutations in hereditary non-polyposis colorectal cancers.
        Int J Cancer. 1997; 74: 94-96
        • Sekine S.
        • Mori T.
        • Ogawa R.
        • et al.
        Mismatch repair deficiency commonly precedes adenoma formation in Lynch syndrome-associated colorectal tumorigenesis.
        Mod Pathol. 2017; 30: 1144-1151
        • McGivern A.
        • Wynter C.V.A.
        • Whitehall V.L.J.
        • et al.
        Promoter hypermethylation Frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer.
        Fam Cancer. 2004; 3: 101-107
        • Boland C.R.
        • Goel A.
        Microsatellite instability in colorectal cancer.
        Gastroenterology. 2010; 138: 2073-2087.e3
        • Kane M.F.
        • Loda M.
        • Gaida G.M.
        • et al.
        Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines.
        Cancer Res. 1997; 57: 808-811
        • Jass J.R.
        • Iino H.
        • Ruszkiewicz A.
        • et al.
        Neoplastic progression occurs through mutator pathways in hyperplastic polyposis of the colorectum.
        Gut. 2000; 47: 43-49
        • Hawkins N.J.
        • Ward R.L.
        Sporadic colorectal cancer with MMI and their possible origin in HPs and serrated adenoma.
        J Natl Cancer Int. 2001; 93: 1307-1313
        • Wynter C.V.
        • Walsh M.D.
        • Higuchi T.
        • Leggett B.A.
        • Young J.
        • Jass J.R.
        Methylation patterns define two types of hyperplastic polyp associated with colorectal cancer.
        Gut. 2004; 53: 573-580
        • Yashiro M.
        • Hirakawa K.
        • Boland C.R.
        Mutations in TGFbeta-RII and BAX mediate tumor progression in the later stages of colorectal cancer with microsatellite instability.
        BMC Cancer. 2010; 10: 303
        • Thibodeau S.N.
        • Bren G.
        • Schaid D.
        Microsatellite instability in cancer of the proximal colon.
        Science. 1993; 260: 816-819
        • Jang M.
        • Kwon Y.
        • Kim H.
        • et al.
        Microsatellite instability test using peptide nucleic acid probe-mediated melting point analysis: a comparison study.
        BMC Cancer. 2018; 18: 1218
        • Boland C.R.
        • Thibodeau S.N.
        • Hamilton S.R.
        • et al.
        A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer.
        Cancer Res. 1998; 58: 5248-5257
        • Gruber S.B.
        • Kohlmann W.
        The genetics of hereditary non-polyposis colorectal cancer.
        J Natl Compr Canc Netw. 2003; 1: 137-144
        • Hegde M.
        • Ferber M.
        • Mao R.
        • Samowitz W.
        • Ganguly A.
        • Working Group of the American College of Medical Genetics and Genomics (ACMG) Laboratory Quality Assurance Committee
        ACMG technical standards and guidelines for genetic testing for inherited colorectal cancer (Lynch syndrome, familial adenomatous polyposis, and MYH-associated polyposis).
        Genet Med. 2014; 16: 101-116
        • Wong Y.F.
        • Cheung T.H.
        • Lo K.W.
        • et al.
        Detection of microsatellite instability in endometrial cancer: advantages of a panel of five mononucleotide repeats over the National Cancer Institute panel of markers.
        Carcinogenesis. 2006; 27: 951-955
        • Takehara Y.
        • Nagasaka T.
        • Nyuya A.
        • et al.
        Accuracy of four mononucleotide-repeat markers for the identification of DNA mismatch-repair deficiency in solid tumors.
        J Transl Med. 2018; 16: 5
        • Buhard O.
        • Cattaneo F.
        • Wong Y.F.
        • et al.
        Multipopulation analysis of polymorphisms in five mononucleotide repeats used to determine the microsatellite instability status of human tumors.
        J Clin Oncol. 2006; 24: 241-251
        • Lindor N.M.
        • Burgart L.J.
        • Leontovich O.
        • et al.
        Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors.
        J Clin Oncol. 2002; 20: 1043-1048
        • Ladabaum U.
        • Wang G.
        • Terdiman J.
        • et al.
        Strategies to identify the Lynch syndrome among patients with colorectal cancer: a cost-effectiveness analysis.
        Ann Intern Med. 2011; 155: 69-79
        • Vanderwalde A.
        • Spetzler D.
        • Xiao N.
        • Gatalica Z.
        • Marshall J.
        Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients.
        Cancer Med. 2018; 7: 746-756
        • Gan C.
        • Love C.
        • Beshay V.
        • et al.
        Applicability of next generation sequencing technology in microsatellite instability testing.
        Genes (Basel). 2015; 6: 46-59
        • Trabucco S.E.
        • Gowen K.
        • Maund S.L.
        • et al.
        A novel next-generation sequencing approach to detecting microsatellite instability and pan-tumor characterization of 1000 microsatellite instability-high cases in 67,000 patient samples.
        J Mol Diagn. 2019; 21: 1053-1066
        • Jass J.R.
        Classification of colorectal cancer based on correlation of clinical, morphological and molecular features.
        Histopathology. 2007; 50: 113-130
        • Guinney J.
        • Dienstmann R.
        • Wang X.
        • et al.
        The consensus molecular subtypes of colorectal cancer.
        Nat Med. 2015; 21: 1350-1356
        • Thanki K.
        • Nicholls M.E.
        • Gajjar A.
        • et al.
        Consensus molecular subtypes of colorectal cancer and their clinical implications.
        Int Biol Biomed J. 2017; 3: 105-111
        • Graham D.M.
        • Appelman H.D.
        Crohn’s-like lymphoid reaction and colorectal carcinoma: a potential histologic prognosticator.
        Mod Pathol. 1990; 3: 332-335
        • Krishna M.
        • Burgart L.J.
        • French A.J.
        • Moon-Tasson L.
        • Halling K.C.
        • Thibodeau S.N.
        Histopathologic features associated with microsatellite instability in colorectal carcinomas.
        Gastroenterology. 1996; 110: A546
        • Kazama Y.
        • Watanabe T.
        • Kanazawa T.
        • Tanaka J.
        • Tanaka T.
        • Nagawa H.
        Poorly differentiated colorectal adenocarcinomas show higher rates of microsatellite instability and promoter methylation of p16 and hMLH1: a study matched for T classification and tumor location.
        J Surg Oncol. 2008; 97: 278-283
        • Young J.
        • Simms L.A.
        • Biden K.G.
        • et al.
        Features of colorectal cancers with high-level microsatellite instability occurring in familial and sporadic settings: parallel pathways of tumorigenesis.
        Am J Pathol. 2001; 159: 2107-2116
        • Kang S.
        • Na Y.
        • Joung S.Y.
        • Lee S.I.
        • Oh S.C.
        • Min B.W.
        The significance of microsatellite instability in colorectal cancer after controlling for clinicopathological factors.
        Medicine (Baltimore). 2018; 97: e0019
        • Sinicrope F.A.
        • Rego R.L.
        • Halling K.C.
        • et al.
        Prognostic impact of microsatellite instability and DNA ploidy in human colon carcinoma patients.
        Gastroenterology. 2006; 131: 729-737
        • Sinicrope F.A.
        • Mahoney M.R.
        • Smyrk T.C.
        • et al.
        Prognostic impact of deficient DNA mismatch repair in patients with stage III colon cancer from a randomized trial of FOLFOX-based adjuvant chemotherapy.
        J Clin Oncol. 2013; 31: 3664-3672
        • Klingbiel D.
        • Saridaki Z.
        • Roth A.D.
        • Bosman F.T.
        • Delorenzi M.
        • Tejpar S.
        Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial.
        Ann Oncol. 2015; 26: 126-132
        • Ribic C.M.
        • Sargent D.J.
        • Moore M.J.
        • et al.
        Tumormicrosatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer.
        N Engl J Med. 2003; 349: 247-257
        • André T.
        • Boni C.
        • Mounedji-Boudiaf L.
        • et al.
        • Multicenter International Study of Oxaliplatin/5-Fluorouracil/Leucovorin in the Adjuvant Treatment of Colon Cancer (MOSAIC) Investigators
        Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer.
        N Engl J Med. 2004; 350: 2343-2351
        • André T.
        • de Gramont A.
        • Vernerey D.
        • et al.
        Adjuvant fluorouracil, leucovorin, and oxaliplatin in stage II to III colon cancer: updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study.
        J Clin Oncol. 2015; 33: 4176-4187
        • Gavin P.G.
        • Colangelo L.H.
        • Fumagalli D.
        • et al.
        Mutation profiling and microsatellite instability in stage II and III colon cancer: an assessment of their prognostic and oxaliplatin predictive value.
        Clin Cancer Res. 2012; 18: 6531-6541
        • Kim J.E.
        • Hong Y.S.
        • Kim H.J.
        • et al.
        Microsatellite instability was not associated with survival in stage III colon cancer treated with adjuvant chemotherapy of oxaliplatin and infusional 5-fluorouracil and leucovorin (FOLFOX).
        Ann Surg Oncol. 2017; 24: 1289-1294
        • Okoń K.
        • Klimkowska A.
        • Wójcik P.
        • Osuch C.
        • Papla B.
        • Stachura J.
        High thymidylate synthase expression is typical for sporadic MSI-H colorectal carcinoma.
        Pol J Pathol. 2006; 57: 29-33
        • Sharma P.
        • Allison J.P.
        The future of immune checkpoint therapy.
        Science. 2015; 348: 56-61
        • Schreiber R.D.
        • Old L.J.
        • Smyth M.J.
        Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion.
        Science. 2011; 331: 1565-1570
        • Wei S.C.
        • Duffy C.R.
        • Allison J.P.
        Fundamental mechanisms of immune checkpoint blockade therapy.
        Cancer Discov. 2018; 8: 1069-1086
        • Hodi F.S.
        • O’Day S.J.
        • McDermott D.F.
        • et al.
        Improved survival with ipilimumab in patients with metastatic melanoma.
        N Engl J Med. 2010; 363: 711-723
        • Schadendorf D.
        • Hodi F.S.
        • Robert C.
        • et al.
        Pooled analysis of long- term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma.
        J Clin Oncol. 2015; 33: 1889-1894
        • Garon E.B.
        • Rizvi N.A.
        • Hui R.
        • et al.
        • KEYNOTE-001 Investigators
        Pembrolizumab for the treatment of non- small-cell lung cancer.
        N Engl J Med. 2015; 372: 2018-2028
        • Brahmer J.
        • Reckamp K.L.
        • Baas P.
        • et al.
        Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer.
        N Engl J Med. 2015; 373: 123-135
        • Rizvi N.A.
        • Hellmann M.D.
        • Snyder A.
        • et al.
        Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non- small cell lung cancer.
        Science. 2015; 348: 124-128
        • Topalian S.L.
        • Hodi F.S.
        • Brahmer J.R.
        • et al.
        Safety, activity, and immune correlates of anti- PD-1 antibody in cancer.
        N Engl J Med. 2012; 366: 2443-2454
        • Lipson E.J.
        • Sharfman W.H.
        • Drake C.G.
        • et al.
        Durable cancer regression off treatment and effective reinduction therapy with an anti- PD-1 antibody.
        Clin Cancer Res. 2013; 19: 462-468
        • Le D.T.
        • Durham J.N.
        • Smith K.N.
        • et al.
        Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.
        Science. 2017; 357: 409-413
        • Overman M.J.
        • McDermott R.
        • Leach J.L.
        • et al.
        Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study.
        Lancet Oncol. 2017; 18: 1182-1191
        • Overman M.J.
        • Lonardi S.
        • Wong K.Y.M.
        • et al.
        Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repairdeficient/microsatellite instability-high metastatic colorectal cancer.
        J Clin Oncol. 2018; 36: 773-779
        • Andre T.L.
        • Lonardi S.
        • Wong M.
        • et al.
        Nivolumab + ipilimumab combination in patients with DNA mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) metastatic colorectal cancer (mCRC): first report of the full cohort from CheckMate-142.
        J Clin Oncol. 2018; 36: 553
        • United States National Library of Medicine
        (Available at:)
        • United States National Library of Medicine
        (Available at:)
        • Chalabi M.
        • Fanchi L.
        • van den Berg J.
        • et al.
        Neoadjuvant ipilimumab plus nivolumab in early stage colon cancer.
        Ann Oncol. 2018; 29: LBA37
        • Schumacher T.N.
        • Schreiber R.D.
        Neoantigens in cancer immunotherapy.
        Science. 2015; 348: 69-74
        • Venderbosch S.
        • Nagtegaal I.D.
        • Maughan T.S.
        • et al.
        Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies.
        Clin Cancer Res. 2014; 20: 5322-5330
        • Llosa N.J.
        • Cruise M.
        • Tam A.
        • et al.
        The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter- inhibitory checkpoints.
        Cancer Discov. 2015; 5: 43-51